ERRATUM TO "RINGS IN WHICH EVERY IDEAL CONTAINED IN THE SET OF ZERO-DIVISORS IS A D-IDEAL", COMMUN. KOREAN MATH. SOC. 37 (2022), NO. 1, PP. 45-56
In this erratum, we correct a mistake in the proof of Proposition 2.7. In fact the equivalence (3) ⇐ (4) "R is a quasi-regular ring if and only if R is a reduced ring and every principal ideal contained in Z(R) is a 0-ideal" does not hold as we only have Rx ⊆ O(S).
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2023, Vol.38 (1), p.121-122 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this erratum, we correct a mistake in the proof of Proposition 2.7. In fact the equivalence (3) ⇐ (4) "R is a quasi-regular ring if and only if R is a reduced ring and every principal ideal contained in Z(R) is a 0-ideal" does not hold as we only have Rx ⊆ O(S). |
---|---|
ISSN: | 1225-1763 2234-3024 |