컨볼루션 신경망(CNN)을 이용한 폭발물 성분 용량별 분류 성능 평가에 관한 연구

본 논문은 컨볼루션 신경망(CNN)을 이용하여 폭발물 성분의 용량별로 분류할 때의 성능을 평가하는 연구이다. 기존의 폭발물 분류 방식 중에 IMS 증기 탐지기 방식은 폭발물의 농도가 사용자가 장비에서 설정한 임계치를 넘어야만 폭발물의 존재 여부를 판단한다. IMS 증기 탐지기는 폭발물이 존재하더라도 임계치를 넘지 않는 양이면 폭발물이 존재하지 않는다고 판단하는 문제가 있다. 따라서 폭발물 성분의 농도가 임계치를 넘지 않는 양일 때에도 폭발물 성분을 검출하는 방안이 필요하다. 이에 따라 본 논문에서는 폭발물 시계열 데이터를 Grami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2022-08, Vol.23 (4), p.11-19
Hauptverfasser: 이창현, Chang-hyeon Lee, 조성윤, Sung-yoon Cho, 권기원, Ki-won Kwon, 임태호, Tae-ho Im
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:본 논문은 컨볼루션 신경망(CNN)을 이용하여 폭발물 성분의 용량별로 분류할 때의 성능을 평가하는 연구이다. 기존의 폭발물 분류 방식 중에 IMS 증기 탐지기 방식은 폭발물의 농도가 사용자가 장비에서 설정한 임계치를 넘어야만 폭발물의 존재 여부를 판단한다. IMS 증기 탐지기는 폭발물이 존재하더라도 임계치를 넘지 않는 양이면 폭발물이 존재하지 않는다고 판단하는 문제가 있다. 따라서 폭발물 성분의 농도가 임계치를 넘지 않는 양일 때에도 폭발물 성분을 검출하는 방안이 필요하다. 이에 따라 본 논문에서는 폭발물 시계열 데이터를 Gramian Angular Field(GAF) 알고리즘으로 이미지화를 진행한 후 이미지와 영상처리뿐만 아니라 시계열 데이터 처리에도 뛰어난 성능을 보이는 딥러닝 모델인 컨볼루션 신경망(CNN)으로 직접 label을 설정해서 지도학습을 진행한 결과 폭발물 성분의 농도가 임계치를 넘지 않는 양일 때에도 폭발물 성분이 존재한다고 판단함과 동시에 폭발물 성분의 종류와 폭발물 성분의 농도의 양을 같이 판단할 수 있는지 성능평가를 진행했다. This paper is a study to evaluate the performance when classifying explosive components by capacity using a convolutional neural network (CNN). Among the existing explosive classification methods, the IMS steam detector method determines the presence or absence of an explosive only when the explosive concentration exceeds the threshold set by the user. The IMS steam detector has a problem of determining that even if an explosive exists, the explosive does not exist in an amount that does not exceed the threshold. Therefore, it is necessary to detect the explosive component even when the concentration of the explosive component does not exceed the threshold. Accordingly, in this paper, after imaging explosive time series data with the Gramian Angular Field (GAF) algorithm, it is possible to determine whether there are explosive components and the amount of explosive components even when the concentration of explosive components does not exceed a threshold.
ISSN:1598-0170
2287-1136