A GENERALIZATION OF MAYNARD'S RESULTS ON THE BRUN-TITCHMARSH THEOREM TO NUMBER FIELDS

Maynard proved that there exists an effectively computable constant q1 such that if q ≥ q1, then $\frac{{\log}\;q}{\sqrt{q}{\phi}(q)}Li(x){\ll}{\pi}(x;\;q,\;m) 1. Assume that L ≠ ℚ is a number field. Then there exist effectively computable constants c0 and d1 such that for dL ≥ d1 and x ≥ exp (326n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2022, Vol.59 (5), p.843-867
Hauptverfasser: Ahn, Jeoung-Hwan, Kwon, Soun-Hi
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maynard proved that there exists an effectively computable constant q1 such that if q ≥ q1, then $\frac{{\log}\;q}{\sqrt{q}{\phi}(q)}Li(x){\ll}{\pi}(x;\;q,\;m) 1. Assume that L ≠ ℚ is a number field. Then there exist effectively computable constants c0 and d1 such that for dL ≥ d1 and x ≥ exp (326n 1L(log dL)1+ 2), we have $$\|{\pi}_C(x)-\frac{{\mid}C{\mid}}{{\mid}G{\mid}}Li(x)\|\;{\leq}\;\(1-c_0\frac{1og\;d_L}{d^{7.072}_L}\)\;\frac{{\mid}C{\mid}}{{\mid}G{\mid}}Li(x)$$.
ISSN:0304-9914