A GENERALIZATION OF MAYNARD'S RESULTS ON THE BRUN-TITCHMARSH THEOREM TO NUMBER FIELDS
Maynard proved that there exists an effectively computable constant q1 such that if q ≥ q1, then $\frac{{\log}\;q}{\sqrt{q}{\phi}(q)}Li(x){\ll}{\pi}(x;\;q,\;m) 1. Assume that L ≠ ℚ is a number field. Then there exist effectively computable constants c0 and d1 such that for dL ≥ d1 and x ≥ exp (326n...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2022, Vol.59 (5), p.843-867 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maynard proved that there exists an effectively computable constant q1 such that if q ≥ q1, then $\frac{{\log}\;q}{\sqrt{q}{\phi}(q)}Li(x){\ll}{\pi}(x;\;q,\;m) 1. Assume that L ≠ ℚ is a number field. Then there exist effectively computable constants c0 and d1 such that for dL ≥ d1 and x ≥ exp (326n 1L(log dL)1+ 2), we have $$\|{\pi}_C(x)-\frac{{\mid}C{\mid}}{{\mid}G{\mid}}Li(x)\|\;{\leq}\;\(1-c_0\frac{1og\;d_L}{d^{7.072}_L}\)\;\frac{{\mid}C{\mid}}{{\mid}G{\mid}}Li(x)$$. |
---|---|
ISSN: | 0304-9914 |