Exploration of errors in variance caused by using the first-order approximation in Mendelian randomization
Mendelian randomization (MR) uses genetic variation as a natural experiment to investigate the causal effects of modifiable risk factors (exposures) on outcomes. Two-sample Mendelian randomization (2SMR) is widely used to measure causal effects between exposures and outcomes via genome-wide associat...
Gespeichert in:
Veröffentlicht in: | Genomics & informatics 2022, Vol.20 (1), p.9.1-9.6 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mendelian randomization (MR) uses genetic variation as a natural experiment to investigate the causal effects of modifiable risk factors (exposures) on outcomes. Two-sample Mendelian randomization (2SMR) is widely used to measure causal effects between exposures and outcomes via genome-wide association studies. 2SMR can increase statistical power by utilizing summary statistics from large consortia such as the UK Biobank. However, the first-order term approximation of standard error is commonly used when applying 2SMR. This approximation can underestimate the variance of causal effects in MR, which can lead to an increased false-positive rate. An alternative is to use the second-order approximation of the standard error, which can considerably correct for the deviation of the first-order approximation. In this study, we simulated MR to show the degree to which the first-order approximation underestimates the variance. We show that depending on the specific situation, the first-order approximation can underestimate the variance almost by half when compared to the true variance, whereas the second-order approximation is robust and accurate. |
---|---|
ISSN: | 1598-866X 2234-0742 |