Exploration of errors in variance caused by using the first-order approximation in Mendelian randomization

Mendelian randomization (MR) uses genetic variation as a natural experiment to investigate the causal effects of modifiable risk factors (exposures) on outcomes. Two-sample Mendelian randomization (2SMR) is widely used to measure causal effects between exposures and outcomes via genome-wide associat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics & informatics 2022, Vol.20 (1), p.9.1-9.6
Hauptverfasser: Kim, Hakin, Kim, Kunhee, Han, Buhm
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mendelian randomization (MR) uses genetic variation as a natural experiment to investigate the causal effects of modifiable risk factors (exposures) on outcomes. Two-sample Mendelian randomization (2SMR) is widely used to measure causal effects between exposures and outcomes via genome-wide association studies. 2SMR can increase statistical power by utilizing summary statistics from large consortia such as the UK Biobank. However, the first-order term approximation of standard error is commonly used when applying 2SMR. This approximation can underestimate the variance of causal effects in MR, which can lead to an increased false-positive rate. An alternative is to use the second-order approximation of the standard error, which can considerably correct for the deviation of the first-order approximation. In this study, we simulated MR to show the degree to which the first-order approximation underestimates the variance. We show that depending on the specific situation, the first-order approximation can underestimate the variance almost by half when compared to the true variance, whereas the second-order approximation is robust and accurate.
ISSN:1598-866X
2234-0742