Application of Standardization for Causal Inference in Observational Studies: A Step-by-step Tutorial for Analysis Using R Software
Epidemiological studies typically examine the causal effect of exposure on a health outcome. Standardization is one of the most straightforward methods for estimating causal estimands. However, compared to inverse probability weighting, there is a lack of user-centric explanations for implementing s...
Gespeichert in:
Veröffentlicht in: | Journal of preventive medicine and public health 2022, Vol.55 (2), p.116-124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epidemiological studies typically examine the causal effect of exposure on a health outcome. Standardization is one of the most straightforward methods for estimating causal estimands. However, compared to inverse probability weighting, there is a lack of user-centric explanations for implementing standardization to estimate causal estimands. This paper explains the standardization method using basic R functions only and how it is linked to the R package stdReg, which can be used to implement the same procedure. We provide a step-by-step tutorial for estimating causal risk differences, causal risk ratios, and causal odds ratios based on standardization. We also discuss how to carry out subgroup analysis in detail. |
---|---|
ISSN: | 1975-8375 2233-4521 |