Hopf-bifurcation Analysis of a Delayed Model for the Treatment of Cancer using Virotherapy
Virotherapy is an effective method for the treatment of cancer. The oncolytic virus specifically infects the lyse cancer cell without harming normal cells. There is a time delay between the time of interaction of the virus with the tumor cells and the time when the tumor cells become infectious and...
Gespeichert in:
Veröffentlicht in: | Kyungpook mathematical journal 2022, Vol.62 (1), p.119-132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Virotherapy is an effective method for the treatment of cancer. The oncolytic virus specifically infects the lyse cancer cell without harming normal cells. There is a time delay between the time of interaction of the virus with the tumor cells and the time when the tumor cells become infectious and produce new virus particles. Several types of viruses are used in virotherapy and the delay varies with the type of virus. This delay can play an important role in the success of virotherapy. Our present study is to explore the impact of this delay in cancer virotherapy through a mathematical model based on delay differential equations. The partial success of virotherapy is guarenteed when one gets a stable non-trivial equilibrium with a low level of tumor cells. There exits Hopf-bifurcation by considering the delay as bifurcation parameter. We have estimated the length of delay which preserves the stability of the non-trivial equilibrium point. So when the delay is less than a threshold value, we can predict partial success of virotherapy for suitable sets of parameters. Here numerical simulations are also performed to support the analytical findings. |
---|---|
ISSN: | 1225-6951 0454-8124 |