ON SPIRALLIKE FUNCTIONS RELATED TO BOUNDED RADIUS ROTATION
In the present paper, we prove the growth and distortion theorems for the spirallike functions class S k (λ) related to boundary radius rotation, and by using the distortion result, we get an estimate for the Gaussian curvature of a minimal surface lifted by a harmonic function whose analytic part b...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2022-03, Vol.44 (1), p.98-109 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we prove the growth and distortion theorems for the spirallike functions class S k (λ) related to boundary radius rotation, and by using the distortion result, we get an estimate for the Gaussian curvature of a minimal surface lifted by a harmonic function whose analytic part belongs to the class S k (λ). Moreover, we determine and draw the minimal surface corresponding to the harmonic Koebe function. |
---|---|
ISSN: | 1225-293X |