ON FINITE GROUPS WITH THE SAME ORDER TYPE AS SIMPLE GROUPS F 4 (q) WITH q EVEN

The main aim of this article is to study quantitative structure of finite simple exceptional groups F4(2n) with n > 1. Here, we prove that the finite simple exceptional groups F4(2n), where 24n + 1 is a prime number with n > 1 a power of 2, can be uniquely determined by their orders and the se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2021, Vol.58 (4), p.1031-1038
Hauptverfasser: Daneshkhah, Ashraf, Moameri, Fatemeh, Mosaed, Hosein Parvizi
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main aim of this article is to study quantitative structure of finite simple exceptional groups F4(2n) with n > 1. Here, we prove that the finite simple exceptional groups F4(2n), where 24n + 1 is a prime number with n > 1 a power of 2, can be uniquely determined by their orders and the set of the number of elements with the same order. In conclusion, we give a positive answer to J. G. Thompson's problem for finite simple exceptional groups F4(2n).
ISSN:1015-8634