ON FINITE GROUPS WITH THE SAME ORDER TYPE AS SIMPLE GROUPS F 4 (q) WITH q EVEN
The main aim of this article is to study quantitative structure of finite simple exceptional groups F4(2n) with n > 1. Here, we prove that the finite simple exceptional groups F4(2n), where 24n + 1 is a prime number with n > 1 a power of 2, can be uniquely determined by their orders and the se...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2021, Vol.58 (4), p.1031-1038 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main aim of this article is to study quantitative structure of finite simple exceptional groups F4(2n) with n > 1. Here, we prove that the finite simple exceptional groups F4(2n), where 24n + 1 is a prime number with n > 1 a power of 2, can be uniquely determined by their orders and the set of the number of elements with the same order. In conclusion, we give a positive answer to J. G. Thompson's problem for finite simple exceptional groups F4(2n). |
---|---|
ISSN: | 1015-8634 |