Ultradense 2-to-4 decoder in quantum-dot cellular automata technology based on MV32 gate
Quantum-dot cellular automata (QCA) is an alternative complementary metal-oxide-semiconductor (CMOS) technology that is used to implement high-speed logical circuits at the atomic or molecular scale. In this study, an optimal 2-to-4 decoder in QCA is presented. The proposed QCA decoder is designed u...
Gespeichert in:
Veröffentlicht in: | ETRI journal 2020-12, Vol.42 (6), p.912-921 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum-dot cellular automata (QCA) is an alternative complementary metal-oxide-semiconductor (CMOS) technology that is used to implement high-speed logical circuits at the atomic or molecular scale. In this study, an optimal 2-to-4 decoder in QCA is presented. The proposed QCA decoder is designed using a new formulation based on the MV32 gate. Notably, the MV32 gate has three inputs and two outputs, which is equivalent two 3-input majority gates, and operates based on cellular interactions. A multilayer design is suggested for the proposed decoder. Subsequently, a new and efficient 3-to-8 QCA decoder architecture is presented using the proposed 2-to-4 QCA decoder. The simulation results of the QCADesigner 2.0.3 software show that the proposed decoders perform well. Comparisons show that the proposed 2-to-4 QCA decoder is superior to the previously proposed ones in terms of cell count, occupied area, and delay. |
---|---|
ISSN: | 1225-6463 2233-7326 |