EXISTENCE, MULTIPLICITY AND REGULARITY OF SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION

We are concerned with the following elliptic equations: $$\{(-{\Delta})^s_pu={\lambda}f(x,u)\;{\text{in {\Omega}}},\\u=0\;{\text{on {\mathbb{R}}^N{\backslash}{\Omega}},$$ where λ are real parameters, (-∆)sp is the fractional p-Laplacian operator, 0 < s < 1 < p < + ∞, sp < N, and f : Ω...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2020, Vol.57 (6), p.1451-1470
1. Verfasser: Kim, Yun-Ho
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1470
container_issue 6
container_start_page 1451
container_title Journal of the Korean Mathematical Society
container_volume 57
creator Kim, Yun-Ho
description We are concerned with the following elliptic equations: $$\{(-{\Delta})^s_pu={\lambda}f(x,u)\;{\text{in {\Omega}}},\\u=0\;{\text{on {\mathbb{R}}^N{\backslash}{\Omega}},$$ where λ are real parameters, (-∆)sp is the fractional p-Laplacian operator, 0 < s < 1 < p < + ∞, sp < N, and f : Ω × ℝ → ℝ satisfies a Carathéodory condition. By applying abstract critical point results, we establish an estimate of the positive interval of the parameters λ for which our problem admits at least one or two nontrivial weak solutions when the nonlinearity f has the subcritical growth condition. In addition, under adequate conditions, we establish an apriori estimate in L∞(Ω) of any possible weak solution by applying the bootstrap argument.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202031563539530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202031563539530</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2020315635395303</originalsourceid><addsrcrecordid>eNqNikELgjAYQHcoSMr_8F26JUynksePNWu1nM0Nig5SVCBJBOv_E0I_oNPjPd6IBJTRNCqKOJ2Q0PvuSuNkmaRplgfkLI6ysaLiYgF7p6ysleTSngCrFRixdgrNoLqERitnpa4aKLUBuxFQGuRDQQXvSGGtkEusQBwcDnlGxo9L7-_hj1MyL4Xlm-jZ-U_Xvm6-b7e40wlNKIuznGWsyBhl_35fejw4ng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EXISTENCE, MULTIPLICITY AND REGULARITY OF SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Yun-Ho</creator><creatorcontrib>Kim, Yun-Ho</creatorcontrib><description>We are concerned with the following elliptic equations: $$\{(-{\Delta})^s_pu={\lambda}f(x,u)\;{\text{in {\Omega}}},\\u=0\;{\text{on {\mathbb{R}}^N{\backslash}{\Omega}},$$ where λ are real parameters, (-∆)sp is the fractional p-Laplacian operator, 0 &lt; s &lt; 1 &lt; p &lt; + ∞, sp &lt; N, and f : Ω × ℝ → ℝ satisfies a Carathéodory condition. By applying abstract critical point results, we establish an estimate of the positive interval of the parameters λ for which our problem admits at least one or two nontrivial weak solutions when the nonlinearity f has the subcritical growth condition. In addition, under adequate conditions, we establish an apriori estimate in L∞(Ω) of any possible weak solution by applying the bootstrap argument.</description><identifier>ISSN: 0304-9914</identifier><language>kor</language><ispartof>Journal of the Korean Mathematical Society, 2020, Vol.57 (6), p.1451-1470</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009</link.rule.ids></links><search><creatorcontrib>Kim, Yun-Ho</creatorcontrib><title>EXISTENCE, MULTIPLICITY AND REGULARITY OF SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION</title><title>Journal of the Korean Mathematical Society</title><addtitle>대한수학회지</addtitle><description>We are concerned with the following elliptic equations: $$\{(-{\Delta})^s_pu={\lambda}f(x,u)\;{\text{in {\Omega}}},\\u=0\;{\text{on {\mathbb{R}}^N{\backslash}{\Omega}},$$ where λ are real parameters, (-∆)sp is the fractional p-Laplacian operator, 0 &lt; s &lt; 1 &lt; p &lt; + ∞, sp &lt; N, and f : Ω × ℝ → ℝ satisfies a Carathéodory condition. By applying abstract critical point results, we establish an estimate of the positive interval of the parameters λ for which our problem admits at least one or two nontrivial weak solutions when the nonlinearity f has the subcritical growth condition. In addition, under adequate conditions, we establish an apriori estimate in L∞(Ω) of any possible weak solution by applying the bootstrap argument.</description><issn>0304-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNikELgjAYQHcoSMr_8F26JUynksePNWu1nM0Nig5SVCBJBOv_E0I_oNPjPd6IBJTRNCqKOJ2Q0PvuSuNkmaRplgfkLI6ysaLiYgF7p6ysleTSngCrFRixdgrNoLqERitnpa4aKLUBuxFQGuRDQQXvSGGtkEusQBwcDnlGxo9L7-_hj1MyL4Xlm-jZ-U_Xvm6-b7e40wlNKIuznGWsyBhl_35fejw4ng</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kim, Yun-Ho</creator><scope>JDI</scope></search><sort><creationdate>2020</creationdate><title>EXISTENCE, MULTIPLICITY AND REGULARITY OF SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION</title><author>Kim, Yun-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2020315635395303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yun-Ho</creatorcontrib><collection>KoreaScience</collection><jtitle>Journal of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yun-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EXISTENCE, MULTIPLICITY AND REGULARITY OF SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION</atitle><jtitle>Journal of the Korean Mathematical Society</jtitle><addtitle>대한수학회지</addtitle><date>2020</date><risdate>2020</risdate><volume>57</volume><issue>6</issue><spage>1451</spage><epage>1470</epage><pages>1451-1470</pages><issn>0304-9914</issn><abstract>We are concerned with the following elliptic equations: $$\{(-{\Delta})^s_pu={\lambda}f(x,u)\;{\text{in {\Omega}}},\\u=0\;{\text{on {\mathbb{R}}^N{\backslash}{\Omega}},$$ where λ are real parameters, (-∆)sp is the fractional p-Laplacian operator, 0 &lt; s &lt; 1 &lt; p &lt; + ∞, sp &lt; N, and f : Ω × ℝ → ℝ satisfies a Carathéodory condition. By applying abstract critical point results, we establish an estimate of the positive interval of the parameters λ for which our problem admits at least one or two nontrivial weak solutions when the nonlinearity f has the subcritical growth condition. In addition, under adequate conditions, we establish an apriori estimate in L∞(Ω) of any possible weak solution by applying the bootstrap argument.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-9914
ispartof Journal of the Korean Mathematical Society, 2020, Vol.57 (6), p.1451-1470
issn 0304-9914
language kor
recordid cdi_kisti_ndsl_JAKO202031563539530
source EZB-FREE-00999 freely available EZB journals
title EXISTENCE, MULTIPLICITY AND REGULARITY OF SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EXISTENCE,%20MULTIPLICITY%20AND%20REGULARITY%20OF%20SOLUTIONS%20FOR%20THE%20FRACTIONAL%20p-LAPLACIAN%20EQUATION&rft.jtitle=Journal%20of%20the%20Korean%20Mathematical%20Society&rft.au=Kim,%20Yun-Ho&rft.date=2020&rft.volume=57&rft.issue=6&rft.spage=1451&rft.epage=1470&rft.pages=1451-1470&rft.issn=0304-9914&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202031563539530%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true