EXISTENCE, MULTIPLICITY AND REGULARITY OF SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION
We are concerned with the following elliptic equations: $$\{(-{\Delta})^s_pu={\lambda}f(x,u)\;{\text{in {\Omega}}},\\u=0\;{\text{on {\mathbb{R}}^N{\backslash}{\Omega}},$$ where λ are real parameters, (-∆)sp is the fractional p-Laplacian operator, 0 < s < 1 < p < + ∞, sp < N, and f : Ω...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2020, Vol.57 (6), p.1451-1470 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We are concerned with the following elliptic equations: $$\{(-{\Delta})^s_pu={\lambda}f(x,u)\;{\text{in {\Omega}}},\\u=0\;{\text{on {\mathbb{R}}^N{\backslash}{\Omega}},$$ where λ are real parameters, (-∆)sp is the fractional p-Laplacian operator, 0 < s < 1 < p < + ∞, sp < N, and f : Ω × ℝ → ℝ satisfies a Carathéodory condition. By applying abstract critical point results, we establish an estimate of the positive interval of the parameters λ for which our problem admits at least one or two nontrivial weak solutions when the nonlinearity f has the subcritical growth condition. In addition, under adequate conditions, we establish an apriori estimate in L∞(Ω) of any possible weak solution by applying the bootstrap argument. |
---|---|
ISSN: | 0304-9914 |