TRACE EXPRESSION OF r-TH ROOT OVER FINITE FIELD

Efficient computation of r-th root in q has many applications in computational number theory and many other related areas. We present a new r-th root formula which generalizes Müller's result on square root, and which provides a possible improvement of the Cipolla-Lehmer type algorithms for gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2020, Vol.57 (4), p.1019-1030
Hauptverfasser: Cho, Gook Hwa, Koo, Namhun, Kwon, Soonhak
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient computation of r-th root in q has many applications in computational number theory and many other related areas. We present a new r-th root formula which generalizes Müller's result on square root, and which provides a possible improvement of the Cipolla-Lehmer type algorithms for general case. More precisely, for given r-th power c ∈ q, we show that there exists α ∈ qr such that $$Tr{\left(\begin{array}{cccc}{{\alpha}^{{\frac{({\sum}_{i=0}^{r-1}\;q^i)-r}{r^2}}}\atop{\text{ }}}\end{array}\right)}^r=c,$$ where $Tr({\alpha})={\alpha}+{\alpha}^q+{\alpha}^{q^2}+{\cdots}+{\alpha}^{q^{r-1}}$ and α is a root of certain irreducible polynomial of degree r over q.
ISSN:0304-9914