Life cycle analysis of concrete and asphalt used in road pavements

The article examines the impact differences between producing concrete and asphalt. Both materials are widely used in the construction industry. Construction activities account for a large portion of greenhouse gases. Therefore, it is important to consider the Life Cycle Analysis (LCA) to reduce env...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental engineering research 2020, Vol.25 (1), p.52-61
Hauptverfasser: lvel, Jocelyn, Watson, Rachel, Abbassi, Bassim, Abu-Hamatteh, Ziad Salem
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article examines the impact differences between producing concrete and asphalt. Both materials are widely used in the construction industry. Construction activities account for a large portion of greenhouse gases. Therefore, it is important to consider the Life Cycle Analysis (LCA) to reduce environmental impacts. In this study, the material processes were inputted into an LCA program called SimaPro. The database used for the study was Ecoinvent as it is one of the major databases within SimaPro. The materials were compared against impacts per kg of material produced as the functional unit. Each process was created using the materials, energy and transportation required to produce the materials. Waste streams were also included in the process to determine the impacts after the product was done with its useful life. Using the ReCiPe method, an LCA was conducted. Midpoint and endpoint categories were examined for both the productions. The processes had similar results for the human health and ecosystems categories; however asphalt was marginally higher for both. Asphalt had exceeded concrete in the resource impact category by 100 mPt. The results indicate that concrete is the more sustainable building material. Determination of various impacts of the materials is important for material selection.
ISSN:1226-1025
2005-968X