GRADIENT PROJECTION METHODS FOR THE n-COUPLING PROBLEM

We are concerned with optimization methods for the $L^2$-Wasserstein least squares problem of Gaussian measures (alternatively the n-coupling problem). Based on its equivalent form on the convex cone of positive definite matrices of fixed size and the strict convexity of the variance function, we ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2019, Vol.56 (4), p.1001-1016
Hauptverfasser: Kum, Sangho, Yun, Sangwoon
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are concerned with optimization methods for the $L^2$-Wasserstein least squares problem of Gaussian measures (alternatively the n-coupling problem). Based on its equivalent form on the convex cone of positive definite matrices of fixed size and the strict convexity of the variance function, we are able to present an implementable (accelerated) gradient method for finding the unique minimizer. Its global convergence rate analysis is provided according to the derived upper bound of Lipschitz constants of the gradient function.
ISSN:0304-9914