AVERAGE VALUES ON THE JACOBIAN VARIETY OF A HYPERELLIPTIC CURVE
We give explicitly an average value formula under the multiplication-by-2 map for the x-coordinates of the 2-division points D on the Jacobian variety J(C) of a hyperelliptic curve C with genus g if $2D{\equiv}2P-2{\infty}$ (mod Pic(C)) for $P=(x_P,y_P){\in}C$ with $y_P{\neq}0$. Moreover, if g = 2,...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2019, Vol.56 (2), p.333-349 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give explicitly an average value formula under the multiplication-by-2 map for the x-coordinates of the 2-division points D on the Jacobian variety J(C) of a hyperelliptic curve C with genus g if $2D{\equiv}2P-2{\infty}$ (mod Pic(C)) for $P=(x_P,y_P){\in}C$ with $y_P{\neq}0$. Moreover, if g = 2, we give a more explicit formula for D such that $2D{\equiv}P-{\infty}$ (mod Pic(C)). |
---|---|
ISSN: | 1015-8634 |