AVERAGE VALUES ON THE JACOBIAN VARIETY OF A HYPERELLIPTIC CURVE

We give explicitly an average value formula under the multiplication-by-2 map for the x-coordinates of the 2-division points D on the Jacobian variety J(C) of a hyperelliptic curve C with genus g if $2D{\equiv}2P-2{\infty}$ (mod Pic(C)) for $P=(x_P,y_P){\in}C$ with $y_P{\neq}0$. Moreover, if g = 2,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2019, Vol.56 (2), p.333-349
Hauptverfasser: Chung, Jiman, Im, Bo-Hae
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give explicitly an average value formula under the multiplication-by-2 map for the x-coordinates of the 2-division points D on the Jacobian variety J(C) of a hyperelliptic curve C with genus g if $2D{\equiv}2P-2{\infty}$ (mod Pic(C)) for $P=(x_P,y_P){\in}C$ with $y_P{\neq}0$. Moreover, if g = 2, we give a more explicit formula for D such that $2D{\equiv}P-{\infty}$ (mod Pic(C)).
ISSN:1015-8634