High Temperature Oxidation Behavior of Nickel and Iron Based Superalloys in Helium Containing Trace Impurities

A high-temperature gas-cooled reactor (HTGR) is recognized as the best candidate reactor for next generation nuclear reactors. Helium is used to be the coolant in the core of the HTGR with temperature expected to exceed 900 °C at the core outlet. Several iron- and nickel-based superalloys, including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science and technology 2019-02, Vol.18 (1), p.8-15
Hauptverfasser: Tsai, C.J, Yeh, T.K, Wang, M.Y
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high-temperature gas-cooled reactor (HTGR) is recognized as the best candidate reactor for next generation nuclear reactors. Helium is used to be the coolant in the core of the HTGR with temperature expected to exceed 900 °C at the core outlet. Several iron- and nickel-based superalloys, including Alloy 800H, Hastelloy X, and Alloy 617, are potential structural materials for intermediate heat exchanger (IHX) in an HTGR. Oxidation behaviors of three selected alloys (Hastelloy X, Alloy 800H, and Alloy 617) were investigated at four different temperatures from 650℃ to 950 ℃ under helium environments with various concentrations of O 2 and H 2 O. Preliminary results showed that chromium oxide as the primary protective layer was observed on surfaces of the three tested alloys. Based on results of mass gain and SEM analyses, Hastelloy X alloy exhibited the best corrosion resistance in all corrosion tests. Further details on the oxidation mechanism of these alloys are presented in this study.
ISSN:1598-6462