DUAL SURFACES DEFINED BY z = f(u) + g(ν) IN SIMPLY ISOTROPIC 3-SPACE ${\mathbb{I}}{\frac{1}{3}}
In this study, we define the dual surfaces by z = f(u) + g(v) and also classify these surfaces in ${\mathbb{I}}{\frac{1}{3}}$ satisfying some algebraic equations in terms of the coordinate functions and the Laplace operators according to fundamental forms of the surface.
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2019, Vol.34 (1), p.267-277 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we define the dual surfaces by z = f(u) + g(v) and also classify these surfaces in ${\mathbb{I}}{\frac{1}{3}}$ satisfying some algebraic equations in terms of the coordinate functions and the Laplace operators according to fundamental forms of the surface. |
---|---|
ISSN: | 1225-1763 2234-3024 |