DUAL SURFACES DEFINED BY z = f(u) + g(ν) IN SIMPLY ISOTROPIC 3-SPACE ${\mathbb{I}}{\frac{1}{3}}

In this study, we define the dual surfaces by z = f(u) + g(v) and also classify these surfaces in ${\mathbb{I}}{\frac{1}{3}}$ satisfying some algebraic equations in terms of the coordinate functions and the Laplace operators according to fundamental forms of the surface.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2019, Vol.34 (1), p.267-277
Hauptverfasser: Cakmak, Ali, Karacan, Murat Kemal, Kiziltug, Sezai
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we define the dual surfaces by z = f(u) + g(v) and also classify these surfaces in ${\mathbb{I}}{\frac{1}{3}}$ satisfying some algebraic equations in terms of the coordinate functions and the Laplace operators according to fundamental forms of the surface.
ISSN:1225-1763
2234-3024