Projection spectral analysis: A unified approach to PCA and ICA with incremental learning

Projection spectral analysis is investigated and refined in this paper, in order to unify principal component analysis and independent component analysis. Singular value decomposition and spectral theorems are applied to nonsymmetric correlation or covariance matrices with multiplicities or singular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ETRI journal 2018-10, Vol.40 (5), p.634-642
Hauptverfasser: Kang, Hoon, Lee, Hyun Su
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Projection spectral analysis is investigated and refined in this paper, in order to unify principal component analysis and independent component analysis. Singular value decomposition and spectral theorems are applied to nonsymmetric correlation or covariance matrices with multiplicities or singularities, where projections and nilpotents are obtained. Therefore, the suggested approach not only utilizes a sum-product of orthogonal projection operators and real distinct eigenvalues for squared singular values, but also reduces the dimension of correlation or covariance if there are multiple zero eigenvalues. Moreover, incremental learning strategies of projection spectral analysis are also suggested to improve the performance.
ISSN:1225-6463
2233-7326