High-Level Production of High-Purity Human and Murine Recombinant Prion Proteins Functionally Compatible to In Vitro Seeding Assay
Recombinant (rec) prion protein (PrP) is an extremely useful resource for studying protein misfolding and subsequent protein aggregation events. Here, we report mass production of high-purity rec-polypeptide encoding the C-terminal globular domain of PrP; (90-230) for human and (89-231) for murine P...
Gespeichert in:
Veröffentlicht in: | Journal of microbiology and biotechnology 2018-10, Vol.28 (10), p.1749-1759 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recombinant (rec) prion protein (PrP) is an extremely useful resource for studying protein misfolding and subsequent protein aggregation events. Here, we report mass production of high-purity rec-polypeptide encoding the C-terminal globular domain of PrP; (90-230) for human and (89-231) for murine PrP. These proteins were expressed as His-tagged fusion proteins in E. coli cultured by a high cell-density aerobic fermentation method. RecPrPs recovered from inclusion bodies were slowly refolded under reducing conditions. Purification was performed by a sequence of metal-affinity, cation-exchange, and reverse-phase chromatography. The current procedure yielded several dozens of milligrams of recPrP per liter with >95% purity. The purified recPrPs predominantly adopted an α-helix-rich conformation and were functionally sufficient as substrates to measure the seeding activity of human and animal prions. Establishment of a procedure for high-level production of highpurity recPrP supports the advancement of in vitro investigations of PrP including diagnosis for prion diseases. |
---|---|
ISSN: | 1017-7825 1738-8872 |