Applying Lexical Semantics to Automatic Extraction of Temporal Expressions in Uyghur
The automatic extraction of temporal information from written texts is a key component of question answering and summarization systems and its efficacy in those systems is very decisive if a temporal expression (TE) is successfully extracted. In this paper, three different approaches for TE extracti...
Gespeichert in:
Veröffentlicht in: | JIPS(Journal of Information Processing Systems) 2018-08, Vol.14 (4), p.824-836 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The automatic extraction of temporal information from written texts is a key component of question answering and summarization systems and its efficacy in those systems is very decisive if a temporal expression (TE) is successfully extracted. In this paper, three different approaches for TE extraction in Uyghur are developed and analyzed. A novel approach which uses lexical semantics as an additional information is also presented to extend classical approaches which are mainly based on morphology and syntax. We used a manually annotated news dataset labeled with TIMEX3 tags and generated three models with different feature combinations. The experimental results show that the best run achieved 0.87 for Precision, 0.89 for Recall, and 0.88 for F1-Measure in Uyghur TE extraction. From the analysis of the results, we concluded that the application of semantic knowledge resolves ambiguity problem at shallower language analysis and significantly aids the development of more efficient Uyghur TE extraction system. |
---|---|
ISSN: | 1976-913X 2092-805X |