NUMERICAL EXPERIMENTS OF THE LEGENDRE POLYNOMIAL BY GENERALIZED DIFFERENTIAL TRANSFORM METHOD FOR SOLVING THE LAPLACE EQUATION
Finding a solution for the Legendre equation is difficult. Especially if it is as a part of the Laplace equation solving in the electric fields. In this paper, first a problem of the generalized differential transform method (GDTM) is solved by the Sturm-Liouville equation, then the Legendre equatio...
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2018, Vol.33 (2), p.639-650 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Finding a solution for the Legendre equation is difficult. Especially if it is as a part of the Laplace equation solving in the electric fields. In this paper, first a problem of the generalized differential transform method (GDTM) is solved by the Sturm-Liouville equation, then the Legendre equation is solved by using it. To continue, the approximate solution is compared with the nth-degree Legendre polynomial for obtaining the inner and outer potential of a sphere. This approximate is more accurate than the previous solutions, and is closer to an ideal potential in the intervals. |
---|---|
ISSN: | 1225-1763 2234-3024 |