FOOTPRINT AND MINIMUM DISTANCE FUNCTIONS
Let S be a polynomial ring over a field K, with a monomial order ${\prec}$, and let I be an unmixed graded ideal of S. In this paper we study two functions associated to I: The minimum distance function ${\delta}_I$ and the footprint function $fp_I$. It is shown that ${\delta}_I$ is positive and tha...
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2018, Vol.33 (1), p.85-101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let S be a polynomial ring over a field K, with a monomial order ${\prec}$, and let I be an unmixed graded ideal of S. In this paper we study two functions associated to I: The minimum distance function ${\delta}_I$ and the footprint function $fp_I$. It is shown that ${\delta}_I$ is positive and that $fp_I$ is positive if the initial ideal of I is unmixed. Then we show that if I is radical and its associated primes are generated by linear forms, then ${\delta}_I$ is strictly decreasing until it reaches the asymptotic value 1. If I is the edge ideal of a Cohen-Macaulay bipartite graph, we show that ${\delta}_I(d)=1$ for d greater than or equal to the regularity of S/I. For a graded ideal of dimension ${\geq}1$, whose initial ideal is a complete intersection, we give an exact sharp lower bound for the corresponding minimum distance function. |
---|---|
ISSN: | 1225-1763 2234-3024 |