SOME ARITHMETIC PROPERTIES ON NONSTANDARD NUMBER FIELDS

For a given number field K, we show that the ranks of elliptic curves over K are uniformly finitely bounded if and only if the weak Mordell-Weil property holds in all (some) ultrapowers $^*K$ of K. We introduce the nonstandard weak Mordell-Weil property for $^*K$ considering each Mordell-Weil group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2017, Vol.54 (4), p.1345-1356
1. Verfasser: Lee, Junguk
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a given number field K, we show that the ranks of elliptic curves over K are uniformly finitely bounded if and only if the weak Mordell-Weil property holds in all (some) ultrapowers $^*K$ of K. We introduce the nonstandard weak Mordell-Weil property for $^*K$ considering each Mordell-Weil group as $^*{\mathbb{Z}}$-module, where $^*{\mathbb{Z}}$ is an ultrapower of ${\mathbb{Z}}$, and we show that the nonstandard weak Mordell-Weil property is equivalent to the weak Mordell-Weil property in $^*K$. In a saturated nonstandard number field, there is a nonstandard ring of integers $^*{\mathbb{Z}}$, which is definable. We can consider definable abelian groups as $^*{\mathbb{Z}}$-modules so that the nonstandard weak Mordell-Weil property is well-defined, and we conclude that the nonstandard weak Mordell-Weil property and the weak Mordell-Weil property are equivalent. We have valuations induced from prime numbers in nonstandard rational number fields, and using these valuations, we identify two nonstandard rational numbers.
ISSN:0304-9914