ZERO-DENSITY ESTIMATES FOR EPSTEIN ZETA FUNCTIONS OF CLASS NUMBERS 2 OR 3
We investigate the zeros of Epstein zeta functions associated with positive definite quadratic forms with rational coefficients in the vertical strip ${\sigma}_1$ < ${\Re}s$ < ${\sigma}_2$, where 1/2 < ${\sigma}_1$ < ${\sigma}_2$ < 1. When the class number h of the quadratic form is b...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2017, Vol.54 (2), p.479-491 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the zeros of Epstein zeta functions associated with positive definite quadratic forms with rational coefficients in the vertical strip ${\sigma}_1$ < ${\Re}s$ < ${\sigma}_2$, where 1/2 < ${\sigma}_1$ < ${\sigma}_2$ < 1. When the class number h of the quadratic form is bigger than 1, Voronin gave a lower bound and Lee gave an asymptotic formula for the number of zeros. Recently Gonek and Lee improved their results by providing a new upper bound for the error term when h > 3. In this paper, we consider the cases h = 2, 3 and provide an upper bound for the error term, smaller than the one for the case h > 3. |
---|---|
ISSN: | 0304-9914 |