ZERO-DENSITY ESTIMATES FOR EPSTEIN ZETA FUNCTIONS OF CLASS NUMBERS 2 OR 3

We investigate the zeros of Epstein zeta functions associated with positive definite quadratic forms with rational coefficients in the vertical strip ${\sigma}_1$ < ${\Re}s$ < ${\sigma}_2$, where 1/2 < ${\sigma}_1$ < ${\sigma}_2$ < 1. When the class number h of the quadratic form is b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2017, Vol.54 (2), p.479-491
1. Verfasser: Lee, Yoonbok
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the zeros of Epstein zeta functions associated with positive definite quadratic forms with rational coefficients in the vertical strip ${\sigma}_1$ < ${\Re}s$ < ${\sigma}_2$, where 1/2 < ${\sigma}_1$ < ${\sigma}_2$ < 1. When the class number h of the quadratic form is bigger than 1, Voronin gave a lower bound and Lee gave an asymptotic formula for the number of zeros. Recently Gonek and Lee improved their results by providing a new upper bound for the error term when h > 3. In this paper, we consider the cases h = 2, 3 and provide an upper bound for the error term, smaller than the one for the case h > 3.
ISSN:0304-9914