5.2 mW 61 dB SNDR 15 MHz Bandwidth CT ΔΣ Modulator Using Single Operational Amplifier and Single Feedback DAC

We propose an architecture that reduces the power consumption and active area of such a modulator through a reduction in the number of active components and a simplification of the topology. The proposed architecture reduces the power consumption and active area by reducing the number of active comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ETRI journal 2016-04, Vol.38 (2), p.217-226
Hauptverfasser: Cho, Young-Kyun, Park, Bong Hyuk, Kim, Choul-Young
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an architecture that reduces the power consumption and active area of such a modulator through a reduction in the number of active components and a simplification of the topology. The proposed architecture reduces the power consumption and active area by reducing the number of active components and simplifying the modulator topology. A novel second-order loop filter that uses a single operational amplifier resonator reduces the number of active elements and enhances the controllability of the transfer function. A trapezoidal-shape half-delayed return-to-zero feedback DAC eliminates the loop-delay compensation circuitry and improves pulse-delay sensitivity. These simple features of the modulator allow higher frequency operation and more design flexibility. Implemented in a 130 nm CMOS technology, the prototype modulator occupies an active area of $0.098mm^2$ and consumes 5.23 mW power from a 1.2 V supply. It achieves a dynamic range of 62 dB and a peak SNDR of 60.95 dB over a 15 MHz signal bandwidth with a sampling frequency of 780 MHz. The figure-of-merit of the modulator is 191 fJ/conversion-step.
ISSN:1225-6463
2233-7326