랜덤화 블록 계획법에서 우산형 대립가설에 대한 정렬방법과 위치를 이용한 비모수 검정법
랜덤화 블록 계획법(randomized block design)에서 대립가설형태에 따라 많은 비모수적인 방법들이 제안되었다. 일반대립가설에서 대표적으로 Fridman (1937)의 검정법이 있고, 순서형 대립가설에서는 Page (1963)의 검정법이 있다. 우산형 대립가설에 대한 비모수적 방법으로는 일원 배치 모형에서 k개의 표본 문제에 대하여 Mack과 Wolfe (1981)의 검정법이 있다. 본 논문에서는 랜덤화 블록 계획법(randomized block design)에서 우산형대립가설에 대하여 블록 간의 정보를 이용한 Hodg...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2016, Vol.29 (7), p.1399-1409 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 랜덤화 블록 계획법(randomized block design)에서 대립가설형태에 따라 많은 비모수적인 방법들이 제안되었다. 일반대립가설에서 대표적으로 Fridman (1937)의 검정법이 있고, 순서형 대립가설에서는 Page (1963)의 검정법이 있다. 우산형 대립가설에 대한 비모수적 방법으로는 일원 배치 모형에서 k개의 표본 문제에 대하여 Mack과 Wolfe (1981)의 검정법이 있다. 본 논문에서는 랜덤화 블록 계획법(randomized block design)에서 우산형대립가설에 대하여 블록 간의 정보를 이용한 Hodges와 Lehmann (1962)의 정렬방법과 위치를 이용한 Kim (1999)의 검정법을 이용하여 검정법을 제안하였다. 또한, Monte carlo 모의실험을 통하여 제안된 검정법과 기존의 검정법을 비교하였다.
Nonparametric methods in randomized block design were suggested by Friedman (1937) for general alternatives and were also proposed by Page (1963) for ordered alternatives in one-way layout; in addition, K-sample rank tests for umbrella alternatives were suggested by Mack and Wolfe (1981). In this paper, we proposed a nonparametric method of umbrella alternatives for randomized block design using the aligned method proposed by Hodges and Lehmann (1962) to use block information and using placement suggested by Kim (1999). Monte Carlo simulation was also adapted to compare the power of the proposed procedure with previous methods. |
---|---|
ISSN: | 1225-066X 2383-5818 |