Association of Cytotoxic T-lymphocyte Antigen-4 Polymorphisms with Malignant Bone Tumors Risk: A Meta-analysis
Background: Previous studies have assessed the association between the Cytotoxic T-lymphocyte Antigen-4(CTLA-4) polymorphism with the risk of malignant bone tumor, but the conclusions were inconsistent. We aimed to clarify association of cytotoxic T-lymphocyte antigen-4 polymorphisms with malignant...
Gespeichert in:
Veröffentlicht in: | Asian Pacific journal of cancer prevention : APJCP 2016, Vol.17 (8), p.3785-3791 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Previous studies have assessed the association between the Cytotoxic T-lymphocyte Antigen-4(CTLA-4) polymorphism with the risk of malignant bone tumor, but the conclusions were inconsistent. We aimed to clarify association of cytotoxic T-lymphocyte antigen-4 polymorphisms with malignant bone tumors risk by performing a meta-analysis. Materials and Methods: The databases including PubMed, EMBase databases and the Cochrane Library were searched to identify the eligible studies prior to January 30 2016. Odds ratio (OR) with 95% confidence interval (95%CI) were used to estimate the strengths of the association between the CTLA-4 polymorphism and the malignant bone tumor risks. The meta-analysis was performed by STATA 12.0. Results: Four individual studies with a total of 1003 cases with malignant bone tumor and 1162 controls were included in our meta-analysis. The results of meta-analysis on those data demonstrated that CTLA-4 +49G>A polymorphism was associated with the risk of Ewing's sarcoma and osteosarcoma strongly (A vs. G: OR=1.36, 95%CI:1.20-1.54, p=0.000; AA+AG vs. GG: OR=1.35, 95%CI:1.14-1.61, p=0.001; AA vs. GG: OR=2.24, 95%CI:1.67-2.99, p=0.000; AA vs. AG+GG: OR=2.00, 95%CI:1.53-2.62, p=0.000), but CTLA-4 -318C/T polymorphism was not associated with the risk of malignant bone tumor (C vs. T: OR=0.76, 95%CI:0.76-1.08, p= 0.262; CC+CT vs. TT: OR=0.70, 95%CI:0.41-1.20, p= 0.198; CC vs. TT: OR=0.69, 95%CI:0.40-1.19, p= 0.183; CC vs. CT+TT: OR=0.92, 95%CI:0.75-1.13, p= 0.419). Subgroup analysis showed that there are significantly positive correlations between CTLA-4 +49G>A polymorphism and increased risks of malignant bone tumors in large size of sample (A vs. G: OR=1.347, 95%CI: 1.172,1.548, p=0.000; AA vs. GG: OR=2.228, 95%CI: 1.608,3.085, p=0.000), Ewing's Sarcoma or Osteosarcoma (A vs. G: OR=1.361, 95%CI: 1.201,1.540, p=0.000; AA vs. GG: OR=2.236, 95%CI: 1.674,2.986, p=0.000), and PCR-RFLP or Sequencing(A vs. G: OR=1.361, 95%CI: 1.201,1.540, p=0.000; AA vs. GG: OR=2.236, 95%CI: 1.674,2.986, p=0.000), but CTLA-4 -318C/T polymorphism was not associated with the risk of malignant bone tumors in diagnosis, genotype method, and sample size (all p>0.05). Conclusions: CTLA-4 +49A/G variant was associated with an increased risk of developing the malignant bone tumors, such as Ewing's sarcoma and osteosarcoma. However, it failed to show the association between CTLA-4 -318C/T polymorphism and the risk of malignant bone tumors. Future large-scale st |
---|---|
ISSN: | 1513-7368 2476-762X |