CHARACTERIZATION OF SUZUKI GROUP BY NSE AND ORDER OF GROUP

Let G be a finite group and nse(G) be the set of numbers of elements of G of the same order. In this paper, we prove that the simple group $Sz(2^{2m+1})$, where $2^{2m+1}-1$ is a prime number, is uniquely determined by $nse(Sz(2^{2m+1}))$ and ${\mid}Sz(2^{2m+1}){\mid}$.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2016, Vol.53 (3), p.651-656
Hauptverfasser: Iranmanesh, Ali, Mosaed, Hosein Parvizi, Tehranian, Abolfazl
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a finite group and nse(G) be the set of numbers of elements of G of the same order. In this paper, we prove that the simple group $Sz(2^{2m+1})$, where $2^{2m+1}-1$ is a prime number, is uniquely determined by $nse(Sz(2^{2m+1}))$ and ${\mid}Sz(2^{2m+1}){\mid}$.
ISSN:1015-8634