CHARACTERIZATION OF SUZUKI GROUP BY NSE AND ORDER OF GROUP
Let G be a finite group and nse(G) be the set of numbers of elements of G of the same order. In this paper, we prove that the simple group $Sz(2^{2m+1})$, where $2^{2m+1}-1$ is a prime number, is uniquely determined by $nse(Sz(2^{2m+1}))$ and ${\mid}Sz(2^{2m+1}){\mid}$.
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2016, Vol.53 (3), p.651-656 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a finite group and nse(G) be the set of numbers of elements of G of the same order. In this paper, we prove that the simple group $Sz(2^{2m+1})$, where $2^{2m+1}-1$ is a prime number, is uniquely determined by $nse(Sz(2^{2m+1}))$ and ${\mid}Sz(2^{2m+1}){\mid}$. |
---|---|
ISSN: | 1015-8634 |