MAXIMUM ZAGREB INDICES IN THE CLASS OF k-APEX TREES
The first and second Zagreb indices of a graph G are defined as $M_1(G)={\sum}_{{\nu}{\in}V}d_G({\nu})^2$ and $M_2(G)={\sum}_{u{\nu}{\in}E(G)}d_G(u)d_G({\nu})$. where $d_G({\nu})$ is the degree of the vertex ${\nu}$. G is called a k-apex tree if k is the smallest integer for which there exists a sub...
Gespeichert in:
Veröffentlicht in: | Korean Journal of mathematics 2015, Vol.23 (3), p.401-408 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first and second Zagreb indices of a graph G are defined as $M_1(G)={\sum}_{{\nu}{\in}V}d_G({\nu})^2$ and $M_2(G)={\sum}_{u{\nu}{\in}E(G)}d_G(u)d_G({\nu})$. where $d_G({\nu})$ is the degree of the vertex ${\nu}$. G is called a k-apex tree if k is the smallest integer for which there exists a subset X of V (G) such that ${\mid}X{\mid}$ = k and G-X is a tree. In this paper, we determine the maximum Zagreb indices in the class of all k-apex trees of order n and characterize the corresponding extremal graphs. |
---|---|
ISSN: | 1976-8605 2288-1433 |