ON THE CONVERGENCE OF SERIES OF MARTINGALE DIFFERENCES WITH MULTIDIMENSIONAL INDICES
Let {Xn; $n{\succeq}1$} be a field of martingale differences taking values in a p-uniformly smooth Banach space. The paper provides conditions under which the series ${\sum}_{i{\preceq}n}\;Xi$ converges almost surely and the tail series {$Tn={\sum}_{i{\gg}n}\;X_i;n{\succeq}1$} satisfies $sup_{k{\suc...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2015, Vol.52 (5), p.1023-1036 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {Xn; $n{\succeq}1$} be a field of martingale differences taking values in a p-uniformly smooth Banach space. The paper provides conditions under which the series ${\sum}_{i{\preceq}n}\;Xi$ converges almost surely and the tail series {$Tn={\sum}_{i{\gg}n}\;X_i;n{\succeq}1$} satisfies $sup_{k{\succeq}n}{\parallel}T_k{\parallel}=\mathcal{O}p(b_n)$ and ${\frac{sup_{k{\succeq}n}{\parallel}T_k{\parallel}}{B_n}}{\rightarrow\limits^p}0$ for given fields of positive numbers {bn} and {Bn}. This result generalizes results of A. Rosalsky, J. Rosenblatt [7], [8] and S. H. Sung, A. I. Volodin [11]. |
---|---|
ISSN: | 0304-9914 |