FINITENESS OF COMMUTABLE MAPS OF BOUNDED DEGREE

In this paper, we study the relation between two dynamical systems (V, f) and (V, g) with $f{\circ}g=g{\circ}f$. As an application, we show that an endomorphism (respectively a polynomial map with Zariski dense, of bounded Preper(f)) has only finitely many endomorphisms (respectively polynomial maps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2015, Vol.52 (1), p.45-56
Hauptverfasser: Lee, Chong Gyu, Ye, Hexi
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the relation between two dynamical systems (V, f) and (V, g) with $f{\circ}g=g{\circ}f$. As an application, we show that an endomorphism (respectively a polynomial map with Zariski dense, of bounded Preper(f)) has only finitely many endomorphisms (respectively polynomial maps) of bounded degree which are commutable with f.
ISSN:1015-8634