SELF-ADJOINT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG
Given operators X and Y acting on a separable Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate self-adjoint interpolation problems for operators in a tridiagonal algebra : Let $\mathcal{L}$ be a subspace lattice acting o...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2014, Vol.36 (1), p.29-32 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given operators X and Y acting on a separable Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate self-adjoint interpolation problems for operators in a tridiagonal algebra : Let $\mathcal{L}$ be a subspace lattice acting on a separable complex Hilbert space $\mathcal{H}$ and let X = ($x_{ij}$) and Y = ($y_{ij}$) be operators acting on $\mathcal{H}$. Then the following are equivalent: (1) There exists a self-adjoint operator A = ($a_{ij}$) in $Alg{\mathcal{L}}$ such that AX = Y. (2) There is a bounded real sequence {${\alpha}_n$} such that $y_{ij}={\alpha}_ix_{ij}$ for $i,j{\in}\mathbb{N}$. |
---|---|
ISSN: | 1225-293X |