실험적 자가면역성 뇌척수염을 유도한 마우스에서 Galectin-9의 과발현
Experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), reflects pathophysiologic steps in MS such as the influence of T cells and antibodies reactive to the myelin sheath, and the cytotoxic effect of cytokines. Galectin-9 (Gal-9) is a member of animal lect...
Gespeichert in:
Veröffentlicht in: | Taehan Suŭi Hakhoe chi 2014, Vol.54 (4), p.209-218 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), reflects pathophysiologic steps in MS such as the influence of T cells and antibodies reactive to the myelin sheath, and the cytotoxic effect of cytokines. Galectin-9 (Gal-9) is a member of animal lectins that plays an essential role in various biological functions. The expression of Gal-9 is significantly enhanced in MS lesions; however, its role in autoimmune disease has not been fully elucidated. To identify the role of Gal-9 in EAE, we measured changes in mRNA and protein expression of Gal-9 as EAE progressed. Expression increased with disease progression, with a sharp rise occurring at its peak. Gal-9 immunoreactivity was mainly expressed in astrocytes and microglia of the central nervous system (CNS) and macrophages of spleen. Flow cytometric analysis revealed that $Gal-9^+CD11b^+$ cells were dramatically increased in the spleen at the peak of disease. Increased expression of tumor necrosis factor (TNF)-R1 and p-Jun N-terminal kinase (JNK) was observed in the CNS of EAE mice, suggesting that TNF-R1 and p-JNK might be key regulators contributing to the expression of Gal-9 during EAE. These results suggest that identification of the relationship between Gal-9 and EAE progression is critical for better understanding Gal-9 biology in autoimmune disease. |
---|---|
ISSN: | 1225-0198 2234-134X |