HYERS-ULAM STABILITY OF MAPPINGS FROM A RING A INTO AN A-BIMODULE

We deal with the Hyers-Ulam stability problem of linear mappings from a vector space into a Banach one with respect to the following functional equation: $$f\(\frac{-x+y}{3}\)+f\(\frac{x-3z}{3}\)+f\(\frac{3x-y+3z}{3}\)=f(x)$$. We then combine this equation with other ones and establish the Hyers-Ula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2013, Vol.28 (4), p.767-782
1. Verfasser: Oubbi, Lahbib
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 782
container_issue 4
container_start_page 767
container_title Communications of the Korean Mathematical Society
container_volume 28
creator Oubbi, Lahbib
description We deal with the Hyers-Ulam stability problem of linear mappings from a vector space into a Banach one with respect to the following functional equation: $$f\(\frac{-x+y}{3}\)+f\(\frac{x-3z}{3}\)+f\(\frac{3x-y+3z}{3}\)=f(x)$$. We then combine this equation with other ones and establish the Hyers-Ulam stability of several kinds of linear mappings, among which the algebra (*-) homomorphisms, the derivations, the multipliers and others. We thus repair and improve some previous assertions in the literature.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201334064306615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201334064306615</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2013340643066153</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBUn5H75Lx8HcN2fXWZor50TnwZMUFUjSZf1_8tAP6PTwwrsgAecoKDIuliSIOI9plEhck9D78cZQ8mQfMxYQVfRZ09KuVAZap1JdateDzcGoutbVqYW8sQYUNHPM6MpZUBUommpjj12ZbcnqeZ38I_y5Ibs8c4eCvkb_GYf33U_DWV0sZxGiYFIgkzKK8d_vC_CqMlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HYERS-ULAM STABILITY OF MAPPINGS FROM A RING A INTO AN A-BIMODULE</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Oubbi, Lahbib</creator><creatorcontrib>Oubbi, Lahbib</creatorcontrib><description>We deal with the Hyers-Ulam stability problem of linear mappings from a vector space into a Banach one with respect to the following functional equation: $$f\(\frac{-x+y}{3}\)+f\(\frac{x-3z}{3}\)+f\(\frac{3x-y+3z}{3}\)=f(x)$$. We then combine this equation with other ones and establish the Hyers-Ulam stability of several kinds of linear mappings, among which the algebra (*-) homomorphisms, the derivations, the multipliers and others. We thus repair and improve some previous assertions in the literature.</description><identifier>ISSN: 1225-1763</identifier><identifier>EISSN: 2234-3024</identifier><language>kor</language><ispartof>Communications of the Korean Mathematical Society, 2013, Vol.28 (4), p.767-782</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Oubbi, Lahbib</creatorcontrib><title>HYERS-ULAM STABILITY OF MAPPINGS FROM A RING A INTO AN A-BIMODULE</title><title>Communications of the Korean Mathematical Society</title><addtitle>대한수학회논문집</addtitle><description>We deal with the Hyers-Ulam stability problem of linear mappings from a vector space into a Banach one with respect to the following functional equation: $$f\(\frac{-x+y}{3}\)+f\(\frac{x-3z}{3}\)+f\(\frac{3x-y+3z}{3}\)=f(x)$$. We then combine this equation with other ones and establish the Hyers-Ulam stability of several kinds of linear mappings, among which the algebra (*-) homomorphisms, the derivations, the multipliers and others. We thus repair and improve some previous assertions in the literature.</description><issn>1225-1763</issn><issn>2234-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNykELgjAYgOERBUn5H75Lx8HcN2fXWZor50TnwZMUFUjSZf1_8tAP6PTwwrsgAecoKDIuliSIOI9plEhck9D78cZQ8mQfMxYQVfRZ09KuVAZap1JdateDzcGoutbVqYW8sQYUNHPM6MpZUBUommpjj12ZbcnqeZ38I_y5Ibs8c4eCvkb_GYf33U_DWV0sZxGiYFIgkzKK8d_vC_CqMlQ</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Oubbi, Lahbib</creator><scope>JDI</scope></search><sort><creationdate>2013</creationdate><title>HYERS-ULAM STABILITY OF MAPPINGS FROM A RING A INTO AN A-BIMODULE</title><author>Oubbi, Lahbib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2013340643066153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oubbi, Lahbib</creatorcontrib><collection>KoreaScience</collection><jtitle>Communications of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oubbi, Lahbib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HYERS-ULAM STABILITY OF MAPPINGS FROM A RING A INTO AN A-BIMODULE</atitle><jtitle>Communications of the Korean Mathematical Society</jtitle><addtitle>대한수학회논문집</addtitle><date>2013</date><risdate>2013</risdate><volume>28</volume><issue>4</issue><spage>767</spage><epage>782</epage><pages>767-782</pages><issn>1225-1763</issn><eissn>2234-3024</eissn><abstract>We deal with the Hyers-Ulam stability problem of linear mappings from a vector space into a Banach one with respect to the following functional equation: $$f\(\frac{-x+y}{3}\)+f\(\frac{x-3z}{3}\)+f\(\frac{3x-y+3z}{3}\)=f(x)$$. We then combine this equation with other ones and establish the Hyers-Ulam stability of several kinds of linear mappings, among which the algebra (*-) homomorphisms, the derivations, the multipliers and others. We thus repair and improve some previous assertions in the literature.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1225-1763
ispartof Communications of the Korean Mathematical Society, 2013, Vol.28 (4), p.767-782
issn 1225-1763
2234-3024
language kor
recordid cdi_kisti_ndsl_JAKO201334064306615
source EZB-FREE-00999 freely available EZB journals
title HYERS-ULAM STABILITY OF MAPPINGS FROM A RING A INTO AN A-BIMODULE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HYERS-ULAM%20STABILITY%20OF%20MAPPINGS%20FROM%20A%20RING%20A%20INTO%20AN%20A-BIMODULE&rft.jtitle=Communications%20of%20the%20Korean%20Mathematical%20Society&rft.au=Oubbi,%20Lahbib&rft.date=2013&rft.volume=28&rft.issue=4&rft.spage=767&rft.epage=782&rft.pages=767-782&rft.issn=1225-1763&rft.eissn=2234-3024&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201334064306615%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true