HYERS-ULAM STABILITY OF MAPPINGS FROM A RING A INTO AN A-BIMODULE

We deal with the Hyers-Ulam stability problem of linear mappings from a vector space into a Banach one with respect to the following functional equation: $$f\(\frac{-x+y}{3}\)+f\(\frac{x-3z}{3}\)+f\(\frac{3x-y+3z}{3}\)=f(x)$$. We then combine this equation with other ones and establish the Hyers-Ula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2013, Vol.28 (4), p.767-782
1. Verfasser: Oubbi, Lahbib
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We deal with the Hyers-Ulam stability problem of linear mappings from a vector space into a Banach one with respect to the following functional equation: $$f\(\frac{-x+y}{3}\)+f\(\frac{x-3z}{3}\)+f\(\frac{3x-y+3z}{3}\)=f(x)$$. We then combine this equation with other ones and establish the Hyers-Ulam stability of several kinds of linear mappings, among which the algebra (*-) homomorphisms, the derivations, the multipliers and others. We thus repair and improve some previous assertions in the literature.
ISSN:1225-1763
2234-3024