ON COEFFICIENTS OF NILPOTENT POLYNOMIALS IN SKEW POLYNOMIAL RINGS

We observe the basic structure of the products of coefficients of nilpotent (left) polynomials in skew polynomial rings. This study consists of a process to extend a well-known result for semi-Armendariz rings. We introduce the concept of ${\alpha}$-skew n-semi-Armendariz ring, where ${\alpha}$ is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Korean Journal of mathematics 2013, Vol.21 (4), p.421-428
Hauptverfasser: Nam, Sang Bok, Ryu, Sung Ju, Yun, Sang Jo
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We observe the basic structure of the products of coefficients of nilpotent (left) polynomials in skew polynomial rings. This study consists of a process to extend a well-known result for semi-Armendariz rings. We introduce the concept of ${\alpha}$-skew n-semi-Armendariz ring, where ${\alpha}$ is a ring endomorphism. We prove that a ring R is ${\alpha}$-rigid if and only if the n by n upper triangular matrix ring over R is $\bar{\alpha}$-skew n-semi-Armendariz. This result are applicable to several known results.
ISSN:1976-8605
2288-1433