Comparison of Different Theory Models and Basis Sets in Calculations of TPOP24N-Oxide Geometry and Geometries of meso-Tetraphenyl Chlorin N-Oxide Regioisomers
Results of the comparisons of various density functional theory (DFT) methods with different basis sets for predicting the molecular geometry of TPOP24N-Oxide macrocycle, an oxoporphyrin N-oxide, are reported in this paper. DFT methods, including M06-2X, B3LYP, LSDA, B3PW91, PBEPBE, and BPV86, are e...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Korean Chemical Society 2012, Vol.33 (9), p.2861-2866 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Results of the comparisons of various density functional theory (DFT) methods with different basis sets for predicting the molecular geometry of TPOP24N-Oxide macrocycle, an oxoporphyrin N-oxide, are reported in this paper. DFT methods, including M06-2X, B3LYP, LSDA, B3PW91, PBEPBE, and BPV86, are examined. Different basis sets, such as 6-$31G^*$, 6-31+G (d, p), 6-311+G (d, p), and 6-311++G (d, p), are also considered. The M06-2X/6-$31G^*$ level is superior to all other density functional methods used in predicting the geometry of TPOP24N-Oxide. The geometries of regioisomeric chlorin N-oxide and oxoporphyrin N-oxide are reported using M06-2X/6-$31G^*$ method. The geometry effects of oxoporphyrin and chlorin N-oxide regioisomers are increased ${\beta}-{\beta}$ bond lengths by N-oxidation because the bond overlap index due to charge transfers is decreased. In N-oxidation ring (II, III), angles that include ${\beta}-{\beta}$ bond length increase as the bond overlap index of ${\beta}-{\beta}$ bond is decreased by N-oxidation. The potential energy surfaces of chlorin N-oxide and oxoporphyrin N-oxide are explored by M06-2X/6-$31G^*$, and single-point calculations are performed at levels up to M06-2X/6-311++G (d, p). Total and relative energies are then calculated. The results indicate that chlorin 24 N-oxides are more stable than chlorin 22 N-oxides in chlorin N-oxide regioisomers. Moreover, TPOP24N-Oxide is less stable than TPOP22N-Oxide. |
---|---|
ISSN: | 0253-2964 1229-5949 |