The Chirality Conversion Reagent for Amino Acids Based on Salicyl Aldehyde

2-Hydroxy-6-(1-(3-phenylurylphenyl)ethoxy)-benzaldehyde ($\mathbf{2}$) has been synthesized in racemic form from 1,3-Dihydroxybenzene via formylation and reaction with 3-phenyluryl-methylbenzylbromide. The optically pure form of $\mathbf{2}$ was separated by normal silica column chromatography from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Korean Chemical Society 2012, Vol.33 (5), p.1715-1718
Hauptverfasser: Yoon, Hoe-Jin, Jung, Hein, Ahn, Yun-Soo, Nandhakumar, Raju, Kim, Jun-Soo, Kim, Kwan-Mook
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:2-Hydroxy-6-(1-(3-phenylurylphenyl)ethoxy)-benzaldehyde ($\mathbf{2}$) has been synthesized in racemic form from 1,3-Dihydroxybenzene via formylation and reaction with 3-phenyluryl-methylbenzylbromide. The optically pure form of $\mathbf{2}$ was separated by normal silica column chromatography from the imine diastreomer which was obtained by the reaction of racemic mixture of $\mathbf{2}$ with optically pure leucinol. The absolute configuration of the separated enantiomer of $\mathbf{2}$ was decided from the energy calculation of the corresponding imine diastereomers. The activity of $\mathbf{2}$ as a chirality conversion reagent (CCR) for amino acids was determined by $^1H$ NMR analysis. The efficiency of $\mathbf{2}$ is not better than the previous CCRs based on binaththol. Compound $\mathbf{2}$, however, has lower molecular weight compared to other CCRs. This work demonstrates that asymmetric carbon can control the selectivity of amino acids.
ISSN:0253-2964
1229-5949