Repeated Clustering to Improve the Discrimination of Typical Daily Load Profile

The customer load profile clustering method is used to make the TDLP (Typical Daily Load Profile) to estimate the quarter hourly load profile of non-AMR (Automatic Meter Reading) customers. This study examines how the repeated clustering method improves the ability to discriminate among the TDLPs of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electrical engineering & technology 2012, Vol.7 (3), p.281-287
Hauptverfasser: Kim, Young-Il, Ko, Jong-Min, Song, Jae-Ju, Choi, Hoon
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The customer load profile clustering method is used to make the TDLP (Typical Daily Load Profile) to estimate the quarter hourly load profile of non-AMR (Automatic Meter Reading) customers. This study examines how the repeated clustering method improves the ability to discriminate among the TDLPs of each cluster. The k-means algorithm is a well-known clustering technology in data mining. Repeated clustering groups the cluster into sub-clusters with the k-means algorithm and chooses the sub-cluster that has the maximum average error and repeats clustering until the final cluster count is satisfied.
ISSN:1975-0102
2093-7423