Observer-Based Adaptive Fuzzy Fault-Tolerant Output Feedback Control of Uncertain Nonlinear Systems with Actuator Faults
This paper develops an adaptive fuzzy control method for accommodating actuator faults in a class of unknown nonlinear systems with unmeasured states. The considered faults are modeled as lock-in-place (stuck at unknown place). With the help of fuzzy logic systems to approximate the unknown nonlinea...
Gespeichert in:
Veröffentlicht in: | International journal of control, automation, and systems automation, and systems, 2012, Vol.10 (6), p.1119-1128 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper develops an adaptive fuzzy control method for accommodating actuator faults in a class of unknown nonlinear systems with unmeasured states. The considered faults are modeled as lock-in-place (stuck at unknown place). With the help of fuzzy logic systems to approximate the unknown nonlinear functions, and K-filters are designed to estimate the unmeasured states. Combining the backstepping technique with the nonlinear fault-tolerant control theory, a novel adaptive fuzzy faults-tolerant control (FTC) approach is constructed. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are bounded and the tracking error between the system output and the reference signal converges to a small neighborhood of zero by appropriate choice of the design parameters. Simulation results are provided to show the effectiveness of the control approach. |
---|---|
ISSN: | 1598-6446 2005-4092 |