Photodissociation of C 3 H 5 Br and C 4 H 7 Br at 234 nm
The photodissociation dynamics of cyclopropyl bromide ($C_3H_5Br$) and cyclobutyl bromide ($C_4H_7Br$) at 234 nm was investigated. A two-dimensional photofragment ion-imaging technique coupled with a [2+1] resonanceenhanced multiphoton ionization scheme was utilized to obtain speed and angular distr...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Korean Chemical Society 2012, Vol.33 (1), p.143-148 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The photodissociation dynamics of cyclopropyl bromide ($C_3H_5Br$) and cyclobutyl bromide ($C_4H_7Br$) at 234 nm was investigated. A two-dimensional photofragment ion-imaging technique coupled with a [2+1] resonanceenhanced multiphoton ionization scheme was utilized to obtain speed and angular distributions of the nascent $Br(^2P_{3/2})$ and $Br^*(^2P_{1/2})$ atoms. The recoil anisotropies for the Br and $Br^*$ channels were measured to be ${\beta}_{Br}=0.92{\pm}0.03$ and ${\beta}_{Br^*}=1.52{\pm}0.04$ for $C_3H_5Br$ and ${\beta}_{Br}=1.10{\pm}0.03$ and ${\beta}_{Br^*}=1.49{\pm}0.05$ for $C_4H_7Br$. The relative quantum yield for Br was found to be ${\Phi}_{Br}=0.13{\pm}0.03$ and for $C_3H_5Br$ and $C_4H_7Br$, respectively. The soft radical limit of the impulsive model adequately modeled the related energy partitioning. The nonadiabatic transition probability from the 3A' and 4A' potential energy surfaces was estimated and discussed. |
---|---|
ISSN: | 0253-2964 1229-5949 |