STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY IN PROPER CQ -ALGEBRAS
In this paper, we prove the Hyers-Ulam-Rassias stability of the following additive functional inequality: ${\parallel}f(2x)+f(2y)+2f(z){\parallel}\;{\leq}\;{\parallel}2f(x+y+z){\parallel}$ We investigate homomorphisms in proper $CQ^*$-algebras and derivations on proper $CQ^*$-algebras associated wit...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2011, Vol.48 (4), p.853-871 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove the Hyers-Ulam-Rassias stability of the following additive functional inequality: ${\parallel}f(2x)+f(2y)+2f(z){\parallel}\;{\leq}\;{\parallel}2f(x+y+z){\parallel}$ We investigate homomorphisms in proper $CQ^*$-algebras and derivations on proper $CQ^*$-algebras associated with the additive functional inequality (0.1). |
---|---|
ISSN: | 1015-8634 |