STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY IN PROPER CQ -ALGEBRAS

In this paper, we prove the Hyers-Ulam-Rassias stability of the following additive functional inequality: ${\parallel}f(2x)+f(2y)+2f(z){\parallel}\;{\leq}\;{\parallel}2f(x+y+z){\parallel}$ We investigate homomorphisms in proper $CQ^*$-algebras and derivations on proper $CQ^*$-algebras associated wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2011, Vol.48 (4), p.853-871
Hauptverfasser: Lee, Jung-Rye, Park, Choon-Kil, Shin, Dong-Yun
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove the Hyers-Ulam-Rassias stability of the following additive functional inequality: ${\parallel}f(2x)+f(2y)+2f(z){\parallel}\;{\leq}\;{\parallel}2f(x+y+z){\parallel}$ We investigate homomorphisms in proper $CQ^*$-algebras and derivations on proper $CQ^*$-algebras associated with the additive functional inequality (0.1).
ISSN:1015-8634