High Accuracy Mass Measurement Approach in the Identification of Phospholipids in Lipid Extracts: 7 T Fourier-transform Mass Spectrometry and MS/MS Validation
In the present study, the approach of high accuracy mass measurements for phospholipid identifications was evaluated using a 7 T ESI-FTMS/linear ion trap MS/MS. Experiments were carried out for porcine brain, bovine liver, and soybean total lipid extracts in both positive and negative ion modes. In...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Korean Chemical Society 2011, Vol.32 (4), p.1170-1178 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present study, the approach of high accuracy mass measurements for phospholipid identifications was evaluated using a 7 T ESI-FTMS/linear ion trap MS/MS. Experiments were carried out for porcine brain, bovine liver, and soybean total lipid extracts in both positive and negative ion modes. In total, 59, 55, and 18 phospholipid species were characterized in the positive ion mode for porcine brain, bovine liver, and soybean lipid extracts, respectively. Assigned lipid classes were PC, PE, PEt, PS, and SM. In the negative ion mode, PG, PS, PA, PE, and PI classes were observed. In the negative ion mode, for porcine brain, bovine liver, and soybean lipid extracts, 28, 34, and 29 species were characterized, respectively. Comparison of our results with those obtained by other groups using derivatization-LC-APCI MS and nano-RP-LC-MS/MS showed that our approach can characterize PC species as effectively as those methods could. In conclusion, we demonstrated that high accuracy mass measurements of total lipid extracts using a high resolution FTMS, particularly, 7T FTMS, plus ion-trap MS/MS are very useful in profiling lipid compositions in biological samples. |
---|---|
ISSN: | 0253-2964 1229-5949 |