Blockade of ERK Phosphorylation in the Nucleus Accumbens Inhibits the Expression of Cocaine-induced Behavioral Sensitization in Rats
Repeated administration of psychostimulants such as cocaine leads to the development of behavioral sensitization. Extracellular signal-Regulated Kinase (ERK), an enzyme important for long-term neuronal plasticity, has been implicated in such effects of these drugs. Although the nucleus accumbens (NA...
Gespeichert in:
Veröffentlicht in: | The Korean journal of physiology & pharmacology 2011-01, Vol.15 (6), p.389-396 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Repeated administration of psychostimulants such as cocaine leads to the development of behavioral sensitization. Extracellular signal-Regulated Kinase (ERK), an enzyme important for long-term neuronal plasticity, has been implicated in such effects of these drugs. Although the nucleus accumbens (NAcc) is the site mediating the expression of behavioral sensitization by drugs of abuse, the precise role of ERK activation in this site has not been determined. In this study we demonstrate that blockade of ERK phosphorylation in the NAcc by a single bilateral microinjections of PD98059 (0.5 or $2.0{\mu}g/side$), or U0126 (0.1 or $1.0{\mu}g/side$), into this site dose-dependently inhibited the expression of cocaine-induced behavioral sensitization when measured at day 7 following 6 consecutive daily cocaine injections (15 mg/kg, i.p.). Acute microinjection of either vehicle or PD98059 alone produced no different locomotor activity compared to saline control. Further, microinjection of PD98059 ($2.0{\mu}g/side$) in the NAcc specifically lowered cocaine-induced increase of ERK phosphorylation levels in this site, while unaffecting p-38 protein levels. These results indicate that ERK activation in the NAcc is necessary for the expression of cocaine-induced behavioral sensitization, and further suggest that repeated cocaine evokes neuronal plasticity involving ERK pathway in this site leading to long-lasting behavioral changes. |
---|---|
ISSN: | 1226-4512 2093-3827 |