Combination Strategy to Increase Cyclosporin A Productivity by Tolypocladium niveum Using Random Mutagenesis and Protoplast Transformation
The cyclic undecapeptide cyclosporin A (CyA), one of the most valuable immunosuppressive drugs, is produced nonribosomally by a multifunctional cyclosporin synthetase enzyme complex by the filamentous fungus Tolypocladium niveum. To increase CyA productivity by wild-type T. niveum (ATCC 34921), rand...
Gespeichert in:
Veröffentlicht in: | Journal of microbiology and biotechnology 2009-09, Vol.19 (9), p.869-872 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cyclic undecapeptide cyclosporin A (CyA), one of the most valuable immunosuppressive drugs, is produced nonribosomally by a multifunctional cyclosporin synthetase enzyme complex by the filamentous fungus Tolypocladium niveum. To increase CyA productivity by wild-type T. niveum (ATCC 34921), random mutagenesis was first performed using an antifungal agar-plug colony assay (APCA) selection approach. This generated a mutant strain producing more than 9-fold greater CyA than the wild-type strain. Additionally, a foreign bacterial gene, Vitreoscilla hemoglobin gene (VHb), was transformed via protoplast regeneration and its transcription was confirmed by RT-PCR in the UV-irradiated mutant cell. This led to an additional 33.5% increase of CyA production. Although most protoplast-regenerated T. niveum transformants tend to lose CyA productivity, the optimized combination of random mutagenesis and protoplast transformation described here should be an efficient strategy to generate a commercially valuable, yet metabolite low-producing, fungal species, such as CyA-producing T. niveum. |
---|---|
ISSN: | 1017-7825 1738-8872 |