ABOUT THE PERIOD OF BELL NUMBERS MODULO A PRIME
Let p be a prime number. It is known that the order o(r) of a root r of the irreducible polynomial $x^p-x-l$ over $\mathbb{F}_p$ divides $g(p)=\frac{p^p-1}{p-1}$. Samuel Wagstaff recently conjectured that o(r) = g(p) for any prime p. The main object of the paper is to give some subsets S of {1,...,g...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2008, Vol.45 (1), p.143-155 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p be a prime number. It is known that the order o(r) of a root r of the irreducible polynomial $x^p-x-l$ over $\mathbb{F}_p$ divides $g(p)=\frac{p^p-1}{p-1}$. Samuel Wagstaff recently conjectured that o(r) = g(p) for any prime p. The main object of the paper is to give some subsets S of {1,...,g(p)} that do not contain o(r). |
---|---|
ISSN: | 1015-8634 |