Effective Process Design and Robust Manufacturing for Hydroformed Parts

A general trend and one of the important strategies in the automotive industry is reducing the lead time of a new car development. In order to obtain this goal the efficient use of simulation software is needed to effectively design a hydroformed part. The stages of the design chain are integrated i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2007, Vol.21 (2), p.235-243
Hauptverfasser: Werner, Stefan, Carleer, Bart, Lee, Chan-Ho, Jung, Dong-Won
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A general trend and one of the important strategies in the automotive industry is reducing the lead time of a new car development. In order to obtain this goal the efficient use of simulation software is needed to effectively design a hydroformed part. The stages of the design chain are integrated in one simulation tool. The outcome of this feasibility analysis is a virtual prototype saying that it is possible to produce the part. In fact one process point has been defined whereas when going into production a process window must be know to guarantee a stable production process. In order to achieve this latter we are suggesting a process performance analysis. Based on multiple simulations the influence and sensitivity various process parameters on the forming process can be identified. Besides combining the analysis with statistical process control evaluation the process capability (Cpk-values) can be defined. This design chain analysis will be applied on a hydroformed part. The process performance analysis is the identification of the process window and process capability in advance, so before any tool has been milled. This will be demonstrated on a second hydroformed part.
ISSN:1738-494X
1976-3824