개선된 화학물질 우선순위 선정 기법(CRS-Korea II)과 그 활용을 통한 지역별 유독물 우선순위의 도출
A chemical ranking and scoring system, CRS - Korea, has recently been developed and proposed to use to prioritize on a screening level the toxic chemicals for monitoring and risk assessment. As CRS-Korea requires rigorous assessments prior to its wide application, an assessment was conducted in this...
Gespeichert in:
Veröffentlicht in: | 환경독성학회지 2005, Vol.20 (4), p.311-325 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A chemical ranking and scoring system, CRS - Korea, has recently been developed and proposed to use to prioritize on a screening level the toxic chemicals for monitoring and risk assessment. As CRS-Korea requires rigorous assessments prior to its wide application, an assessment was conducted in this study by examining the contribution of individual parameter score to the final chemical score or ranking. The sensitivity of the system to the default values for various parameters of missing data was also tested. The chemical ranking/score was round to depend primarily on the score of a single parameter, i. e., the chemical release, while toxicity scores show little correlation with the priority Further analysis indicated that the dominating effect of the chemical release results from i) its multiplicative relationship with the other two exposure parameters (biodegradation and persistent) and ii) the fact that a maximum score of 10 was assigned to the chemical release parameter while 5 was assigned for all others. AE the fraction of the data that are missing exceeded $70\%$ for various toxicity parameters at compared to less than $10\%$ for exposure parameters, the sensitivity of the ranking to the default value was not significant (rank correlation coefficient = 0.98) for toxicity parameters. Bated on this assessment, an improved CRS system (CRS - Korea II) was proposed in which the impact of the chemical release was properly adjusted by changing the multiplicative relationship to additive one and the maximum score to 5. Chemical priority was derived for each of 16 provinces by using CRS-Korea II. The chemical priority was found to significantly vary among the provinces. It was concluded that not only the national chemical priority but the local chemical priority should be taken into account in setting the nationwide chemical monitoring and risk assessment strategy. |
---|---|
ISSN: | 1226-9158 |