Photocatalytic Cell Disruption of Giardia lamblia in a $UV/TiO_2$ Immobilized Optical-Fiber Reactor

Disinfection of a waterborne pathogenic protozoa, Giardia lamblia, by the conventional chlorine method has been known to be difficult. An alternative disinfection has been carried out by using a UV -light illuminating optical­fiber photoreactor. Light intensity diffused from one piece of a clad-remo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microbiology and biotechnology 2004, Vol.14 (6), p.1105-1113
Hauptverfasser: 유미진, 김병우, YU , MI-JIN, KIM, BYUNG-WOO
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disinfection of a waterborne pathogenic protozoa, Giardia lamblia, by the conventional chlorine method has been known to be difficult. An alternative disinfection has been carried out by using a UV -light illuminating optical­fiber photoreactor. Light intensity diffused from one piece of a clad-removed optical-fiber was $1- 1.5{\mu}Em^{-2}s^{-1}$. Disinfection capability in a UV -light irradiated optical-fiber reactor suspended with 0.01 g $TiO_{2}\;dm^{-3}$ was 1.4 times that in the same reactor without $TiO_{2}$ photocatalysts. To resolve the absorption and scattering of UV light by the particles themselves as well as the difficulty of recycling particles in the slurry­type reactor, $TiO_{2}$ which was obtained by a hydrothermal method, was immobilized on clad-removed optical fibers. Such pretreatment of fiber surface resulted in an excellent transparency, which enhanced the UV light to diffuse laterally from a fiber surface. Coating time of the prepared solution by the hydrothermal method was not effective after more than two times. Disinfection capability in the $TiO_{2}$-immobilized optical-fiber reactor was $83\%$ in 1 h at $40^{\circ}C$, which was slightly higher than $76\%$ at $22^{\circ}C$ and $68\%$ at $10^{\circ}C$. Disinfection capability at $22^{\circ}C$ increased from $74\%$ at an initial pH of 3.4, through $76\%$ at pH 6.5, to $87\%$ at an initial pH of 10. Oxygen supply with air-flow rate of 5 $cm^3\;min^{-1}$ did not seem to increase the disinfection capability with UV /immobilized $TiO_2$.
ISSN:1017-7825
1738-8872