Catalytic Oxidoreduction of Pyruvate/Lactate and Acetaldehyde/Ethanol Coupled to Electrochemical Oxidoreduction of NAD(+)/NADH
We deviced a new graphite-Mn(II) electrode and found that the modified electrode with Mn(II) can catalyze NADH oxidation and $NAD^+$ reduction coupled to electricity production and consumption as oxidizing agent and reducing power, respectively. In fuel cell with graphite-Mn(II) anode and graphite-F...
Gespeichert in:
Veröffentlicht in: | Journal of microbiology and biotechnology 2004-06, Vol.14 (3), p.540-546 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We deviced a new graphite-Mn(II) electrode and found that the modified electrode with Mn(II) can catalyze NADH oxidation and $NAD^+$ reduction coupled to electricity production and consumption as oxidizing agent and reducing power, respectively. In fuel cell with graphite-Mn(II) anode and graphite-Fe(III) cathode, the electricity of 1.5 coulomb (A x s) was produced from NADH which was electrochemically reduced by the graphite-Mn(II) electrode. When the initial concentrations of pyruvate and acetaldehyde were adjusted to 40 mM and 200 mM, respectively, about 25 mM lactate and 35 mM ethanol were produced from 40 mM pyruvate and 200 mM acetaldehyde, respectively, by catalysis of ADH and LDH in the electrochemical reactor with $NAD^+$ as cofactor and electricity as reducing power. By using this new electrode with catalytic function, the bioelectrocatalysts are engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and $NAD^+$ can function for biotransformation without electron mediator and second oxidoreductase for $NAD^+$/NADH recycling. |
---|---|
ISSN: | 1017-7825 1738-8872 |